Thermografische assistentie bij huidkanker screening

Masterproef – 17 juni

Jurgen Wittenberg

Table of content

Introduction

Post-processing & data collection

Classification algorithms

Classification in Matlab

Classification evaluation

Conclusion and future work

Introduction

<u>Objective</u>: Investigate to what extent it is possible to distinguish from each other different types of skin spots, based on statically and dynamically obtained thermal images, using machine learning.

Hypothesis:

- Different temperature profiles (steady-state analysis)
- Different thermal recovery process (dynamic analysis)

Has been demonstrated in multiple studies.

Malignant skin tumors	Benign skin tumors
Melanoma	Melanomacytic nevi
Basal cell carcinoma (BCC)	Actinic keratoses
Squamous cell carcinoma (SCC)	Seborrheic keratoses

Statically obtained data

20 datapoints are stored in array:

Data =
$$\{a1,a2,a3,...,a20\}$$
 \rightarrow Mean of diagonal 1 & 2

Serves as input for machine learning classifier.

Statically obtained data

Dynamically obtained data – Measurement setup labo

- Dynamically obtained data Dataset from Porto
 - No reference in image & no visual image
 - Image segmentation
 - Less accurate than previous method

Dynamische data – Dataset from Porto

Otsu's segmentation method

Without Gaussian filter

With Gaussian filter

Dynamische data – Dataset from Porto

Melanoma vs. melanocytic nevi

Melanoma vs. melanocytic nevi vs. BCC vs.SCC

Classification

Supervised learning:

- Input data has been labeled for a particular output
- Trained until it can detect the underlying patterns and relationships
 - between the input data and the output labels
- Good for classification of never-before-seen data

Classification algorithms

k-Nearest Neighbors (k-NN)

$$d_{Euclidisch}(x_1, x_2) = \frac{1}{2} \sqrt{\sum_{j=1}^{N} (x_{1j} - x_{2j})^2}$$

- Assumes that similar things exist in close proximity
- 'k' is the number of closest objects that the algorithm looks at to determine the class of a new object.
- Several distance metrics can be used (e.g. Euclidean distance function)
- Long execution time

Decision tree

- Binary classification in Matlab
- Unstable learning algorithm

Support vector machine (SVM)

- Line or hyperplane between separates the data into two classes
- Unstable learning algorithm
- Originally designed for binary classification, but extended for multi-class-problems
- Sensitive to noise
- Accurate with small dataset, not suitable for large datasets

Ensemble

- Combining several models
- Many ensemble techniques available

Convolutional neural network (CNN)

- Large amount of data needed for training
- Other studies did not show good results using CNN for melanoma detection.

Classification in Matlab

- k-fold cross validation (k=5)
- Run 5 times
- Choose algorithm with best results for each case
- Choose average result of this algorithm for each case

Cases

Case 1 Melanocytic nevi vs. melanoma

Case 2 Benign vs. melanoma

Case 3 Classifying all 6 types of tumors

Case 4 Benign vs. malignant

Resultaten

Static analysis

Task	Algorithm	Accuracy	Sensitivity	Specificity
Melanocytic nevi	Ensemble	87,5%	50%	100%
vs. Melanoma	LIISCITIBIC	67,570	3070	10070
Benign vs.	Ensemble	58,3%	50%	100%
Melanoma	Ensemble	36,3%	30%	100%
All types of skin	SVM	46,2%	56,3%	60%
tumors		40,270	30,3%	00%
Benign vs.	Ensemble	E7 70/	69.90/	40%
Malignant	cusemble	57,7%	68,8%	40%

Sensitivity =	Σ true positive
	Σ malignant tumors

$$Specificity = \frac{\Sigma true \ negative}{\Sigma benign \ tumors}$$

Dynamic analysis

Task	Algorithm	Accuracy	Sensitivity	Specificity
Melanocytic nevi	Ensemble	100%	100%	100%
vs. Melanoma	LIISCITIBIC	10070	10070	10070
Benign vs.	k-NN	63,6%	100%	100%
Melanoma		03,070	100%	100%
All types of skin	k-NN	47,8%	85,7%	66,7%
tumors		47,870	83,770	00,7 /0
Benign vs.	Beslissingsboom	82,6%	85,7%	77,8%
Malignant	Desiissiiigsbooiii	82,070	85,770	77,870

Better classification results for dynamically obtained data.

Reliability & validity

- Limited number of skin lesions
- Measurement procedure
 - Uneven cooling (in ear, on eyelid, ...)
 - Only one image per minute
 - No visual images & no square marker
 (less accurate temperature determination)

Conclusion & future work

- Melanoma and melanocytic nevi seems to be distinguishable from each other
- BCC and SCC are more difficult to classify correctly
- More accurate measurement results with alignment algorithm and visual images → probably better classification results
- Examine a larger number of skin tumors \rightarrow = more accurate classification
- Research into relationship between size of the tumor and the recovery temperature (use the size of the tumor as an extra input parameter for the ML classifier?)
- Combine with multispectral measurements

Q/A

Thank you for your attention!