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Gaussian process

0 Definition.

A Gaussian process (GP) is an stochastic process with the property that any
finite number of random variables taken from the process follows a joint
Gaussian distribution.

0 The GP is specified as
f(x) ~ GP(m(x), k(x,x")).

o Common use: prior over functions in Bayesian modelling.
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Bayesian modelling
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Valid covariance functions for multiple outputs (I)

Gaussian process priors for multiple outputs have been thoroughly studied
in the spatial analysis and geostatistics literature
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Valid covariance functions for multiple outputs (II)
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Valid covariance functions for multiple outputs (II)

Joint covariance

K ? ?
K= |7 | k| ?
? ? K3

K be a valid covariance matrix

7142



Contents

Latent Force Models

8/42



Building new kernels

0 Covariance function: convolution integrals between Green’s functions
associated with differential operators, and covariance functions
associated with latent functions.

0 Back in 2009, we named this way of building covariance functions for
GPs as latent force models (LFM).

o An LFMis a Gaussian process with a covariance function inspired by a
differential operator.
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Process convolutions

Q

Consider a set of functions {fy(x)}5_,.

Each function can be expressed as

/Gd —2Z)u(z)dz = Gy(x) * u(x).

If u(x) is a GP, then fy(x) is also a GP.

We could also include more latent processes ui(X), uz(X), ...

Q
= ; /X Gy,q(X — 2)Ug(2)dz,

where cov[ug(2), Uy (2')] = kg(Z,2')dg,q -
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Process convolutions

u(x) W\

u(x): latent function.
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Process convolutions
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u(x): latent function.
G(x): smoothing kernel.
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Process convolutions

“ f\_

RPN

u(x): latent function.
G(x): smoothing kernel.
f(x): output function.
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Covariance function
Assume we have D outputs, {f3(x)}5_,. The covariance between f;(x) and

fa (x") follows

Q
Ky 1, (X, X') = Z/X Gy q(X —2) /X Gy q(X' —Z')kg(z,2")dZ'dz.
q=1
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Latent Force Models

0 Suppose we want to model the outputs of different dynamical systems
driven by a set of latent functions.

o Each output is given by
M gm Q
DME =N Apa—[fy(1)] =
o fa mz::O m,ddtm[d(t)] ;Sd,quq(t)a

where we have introduced an operator DY that is equivalent to applying

the weighted sum of operators 5‘%.
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Green’s functions

a  The operator DY is related to a so called Green’s function Gy(t, s) by
DS/’[Gd(t7 S)] = 6(t - S)a

with s fixed.

0 The solution for fy(t) can be written in terms of the Green’s function like

Q
fo(t) = Z Sd.qla.q(t, Ug(1)),
g=1

with

loalt- (1) = [ Golt.7)ug(r)or
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Covariance for the outputs

0 We assume that the latent functions {u,;,(t)}g’:1 are independent.

0 We also assume that each ug(t) follows a Gaussian process prior, this
is, Ug(t) ~ GP(0, ky(t,1')).

a The covariance cov[fy(t), fy(t')] is the given as

Q
Z Sd7qu/_yq/ / Gy(t — 7)Gg (V' — 7')kg(7, 7")d7"dT.
p TJ7

0  We define k,gyfg,(t, t') = cov[fy q(t, Ug(t)), far ,q(t', Ug(1))],

kfé’vf;’,(ta t) = /T - Gy(t — 7)Go (t' — 7")kg(7, 7")d7"dr.
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LFM
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force(t) ~ GP(0, k(t,t))
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LFM force(t)
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LFM
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Switched LFM

spring(i)

SNNSNN

NN

damper(i)

force(t,i) FI_:TS(D‘_‘ outputi(t)
|

sensitivity(i)

force(t,i) ~ GP(0, k(t,t’,i)

18/42



Switched LFM
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Switched LFM
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Switched LFM
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Including initial conditions

YAt — t2)

Ya(t) = ya(0)cq(t) + ya(0)eq(t) + Safy(t, u),

where

Ck(f . —-Cldt .
cq(t) = e~ ! {cos(wdt) + oy sm(wdt)], eq(t) = o sin(wgt),

t
fd(t’ u) = /0 M;wd e—ocd(t—‘r) sin[(t — T)Wd] U(T)dT.
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Continuous in the outputs

zg(t) = ch(t — ti1)yh(ti1) + €ly(t — ti1)yh(tio1) + Saify(t — ti1, ui—q).
We need to compute

cov[z4(t), zg (1')].
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Covariance and Samples
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Covariance and Samples

outputs
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Segmentation of human movement (I)

o The task is to segment discrete movements related to motor primitives.

o Data collection was performed using a Barrett WAM robot as haptic
input device, with 7 DOF.
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Segmentation of human movement (ll)

Value of the log-likelihood
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Covariance for LFMs using RFF (1)
0 The covariance function we need to compute in LFMs is
Q t /
S SuqSu / Ga(t — 7) / G (' — 7 )ko(r, 7')drdr.
prt 0 0

0 We use Bochner theorem to represent kq(7,7").

2 The cross-covariance function for the LFM, ki ¢, (t,1') is then

Q t t
S SuqSuq / Ga(t —7) / Ga(t — ') / p(\) e~ N drdrdr.
o 0 0

Cristian Guarnizo
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Covariance for LFMs using RFF (ll)

2 The cross-covariance function for the LFM, ki ¢, (,1') is then

Q t t ) ,
S SuqSu / Ga(t —7) / G (1 — ') / p(\) e N drdrdr.
por 0 0

0 Organizing the above expression we obtain

Q
" S4.4504 / POVa(t, 0a Vi (2 0, \) A,
q=1

with
t .
Va(t, 65, \) = / Gu(t — )& dr,
0

where 6, makes reference to the parameters of Gy(+).
a We refer to vy4(t,0q,\) as a random Fourier response feature.

27/42



Comparison of kernel matrices
0 Responses: fi(-) is overdamped, f(-) is underdamped.

0 Input times comprises 100 values in the range from Os to 3s for each

output.

u For S =100, the Frobenius norm between the covariance matrices is

239.1. For S = 10° samples, the Frobenius norm is 5.8.

ODE2 ODE2+S100

Ki, 1 K 1, Ki, 1 Kt 1,

15 3.0 15 30 15 30 15 30
K
Kot fofp Kot Koty

Guarnizo and Alvarez at UAI (2018).
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Deep LFMs

(a) Deep Gaussian process (DGP)
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(b) Deep latent force model (DLFM)
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DLFM (Q=1)
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McDonald and Alvarez at NeurlPS (2021).
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Non-linear process convolutions

o For a given output dimension, d, we approximate the function with a
truncated Volterra series as follows

c
7Ot Z/ /G( (t =71, t— o) [ ),
j=1
where G are ¢ degree Volterra kernels.
0 In contrast to the linear case, the output fgc) is no longer a GP.

0 We approximate £\ with a GP 79 (1)
B2 ~ GPy (1) kg (8.1)),

where i) (1) = E[{9(1)] and K7 (1, ') = cov {9 (1), £57(1)].
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Non-parametric Volterra kernels
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Vision: learning a continuum of “physics” from data

White-box modelling Black-box modelling

af(x, ?f(x,t

UwD _PIGD S p0, ) i)
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R | CLI 21 B2 0 P
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Vision: learning a continuum of “physics” from data

Physics-based modelling  Causal models Statistical modelling
White-box modelling Black-box modelling
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Vision: learning a continuum of “physics” from data

Physics-based modelling Statistical modelling
White-box modelling Black-box modelling
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Summary

o LFMs incorporate dynamical systems and PDEs in a kernel function.
o Random Fourier features allow for fast computation for LFMs.
0 LFMs with Volterra Series for non-linear systems.

a Itis possible to learn non-parametric versions of these models.
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