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Outline

* Fleet Setting
e Reinforcement Learning (RL)

e Gaussian process (GP)

 Fleet GPRL

e Demonstration on mountain car

* Applied on wind farm control case
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Fleet Setting

e Similar devices, same control task
* Large scale production / operation
* High maintenance costs!

* Failure prevention through control




Fleet Control

* Failures are costly events, how do we learn from them?
e Sample efficiency is key!

* Group of devices/machines with same objective & same design
* Potential to share knowledge about control task

* Small discrepancies
* e.g., degradation, production errors
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Sharing Control

~ wind turbines = # control strategies

Challenge: How do we share information?
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Markov Decision Process

* MDP (S,A,T,v,R)
* S, A are possible state and actions

« Tisa transition function Environment
 Ris areward function

* v is a discountfactor
ter
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Fleet Markov Decision Process

* Fleet MDP (5,4, T,y,R)

* Tisasetof M transition models T, (s, a)

* How can we detect similarities and transfer knowledge between
models?

e Joint Bayesian regression model (i.e., Gaussian process)
— correlations between fleet members
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Gaussian Process

11
Figure made by Carl Henrik Ek (Gaussian Process Summer School 2018)



Gaussian Process
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Gaussian Process
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Figure made by Carl Henrik Ek (Gaussian Process Summer School 2018)



Gaussian Process
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Figure made by Carl Henrik Ek (Gaussian Process Summer School 2018)



Gaussian Process N(H K) —> N(H K>
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Gaussian Process
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Figure made by Carl Henrik Ek (Gaussian Process Summer School 2018)



Gaussian Process N(H [k(l k(m,:c’)])
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Covariance kernels

Squared-exponential Linear Brownian

k(x,x") = exp(—|lx — x"||*/1%) k(x,x") =xTx' k(x,x') = min(x, x")



Sample functions from GPs

Squared-exponential Linear
k(x,x") = exp(=llx — x'[I?/1?) k(x,x") = xTx’

Brownian

k(x,x") = min(x, x")
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2020

2010

2000

Monthly mean CO, at the Mauna Loa Observatory, Hawaii
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400 A — GPfit

Kernel combination:
* Linear 380
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Kernel combination:

Linear
Periodic
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Property |Kemel

Linear trend Linear
Constant offset Bias
Periodicity (short term) Periodic

Amplitude modulator (long term) Squared-exponential
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Gaussian Process

° " 0‘.,

31
Bayesian model: 2|
* Parameters are considered to be random w .
1l
. .,:.'
Used for regression: e
1) Describe prior beliefs
2) Observe data “bo 02

3) Update belief (i.e., posterior)

Generalizationthrough pair-wise correlations:
 If x and x' are similar, their outputsy andy' are correlated
* E.g., distance-based

f(x) ~GP(0,k(x,x"))

0.4 0.6 0.8
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Transfer over transition models

1) Adopt “multiple sources — single target” transfer
framework

* Choose target in fleet, the rest are sources

* Sources have independentcomponents
o Ts(x) = wg G (x) + asLs(x)

e Target has an independentcomponent, but is also
dependent on the sources

« To(x) = Yswp G () + Ly (x)

2) The componentsare sampled from a a zero-mean GP
* Alinearcombination of componentsis also a GP! 25



Transfer over transition models

1) cov(Tt (x), T, (x’))
= Wi W cov(Gs(x), Gs(x')) [independence]
=W W (2, x) [covariance kernel]

2) New fleet-wide kernel:
* kp([x,m], [x",m']) = G, m k(x,x"), where G contains the weights

Key insight: Correlate fleet members’ transition models
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Continuous Mountain Car

1 target with random batch of 20 transitions:
 Mass 1.0 kg

‘ | ‘

* 2 sources with random batch of 100 transitions:
* Source A hasmass1.1kg
* Source B hasmass 5.0 kg

* Peaked Gaussianly shaped reward is given at the goal
(at the flag with a velocity of 0).

* Objective: Reach the goal using sources’ and own transition models



Performance
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Learned correlations
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Velocity

Value Functions
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Wind Farm Control

* Fleet of 8 agents, 50 samples each

* Members are turbine rows: 1 upstream and 1
downstream turbine

* Non-linear dynamics due to wake
e Vary generator efficiencies due to degradation

* Learn to orient themselves to maximize power
production

WIND 7~
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Conclusion

* Sparse transfer learning model for fleet control

* GPs =2 sound, efficient framework to deal with correlations between
fleet members

* Allows for inclusion of domain knowledge

* URL: https://arxiv.org/abs/1911.10121



