Fleet-Wide Policy Iteration using Gaussian Processes

Timothy Verstraeten

VUB – AI Lab & AVRG

In collaboration with: Pieter J.K. Libin & Jan Helsen & Ann Nowe

Outline

- Fleet Setting
- Reinforcement Learning (RL)
- Gaussian process (GP)
- Fleet GPRL
- Demonstration on mountain car
- Applied on wind farm control case

- Similar devices, same control task
- Large scale production / operation

- Similar devices, same control task
- Large scale production / operation

- Similar devices, same control task
- Large scale production / operation
- High maintenance costs!

- Similar devices, same control task
- Large scale production / operation
- High maintenance costs!
- Failure prevention through control

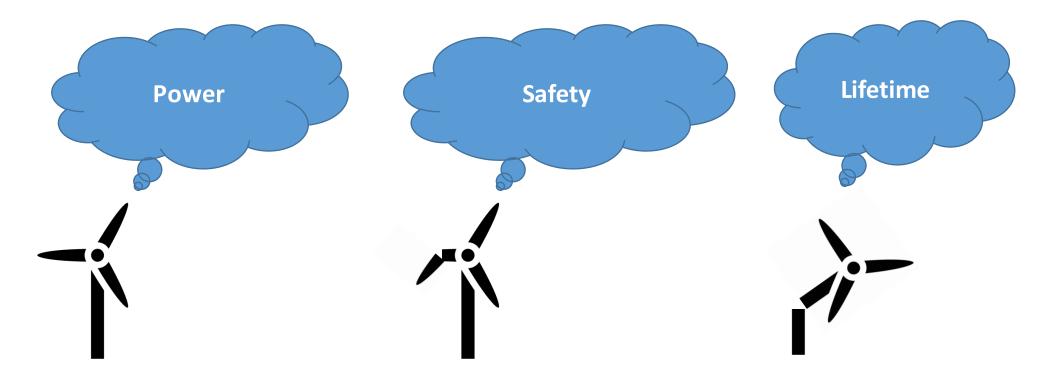
Fleet Control

- Failures are costly events, how do we learn from them?
 - Sample efficiency is key!
- Group of devices/machines with same objective & same design
 - Potential to share knowledge about control task
- Small discrepancies
 - e.g., degradation, production errors

Sharing Control

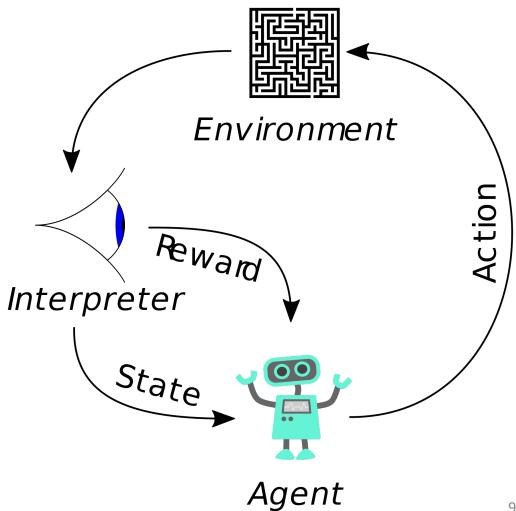
\approx wind turbines \rightarrow \neq control strategies

Challenge: How do we share information?



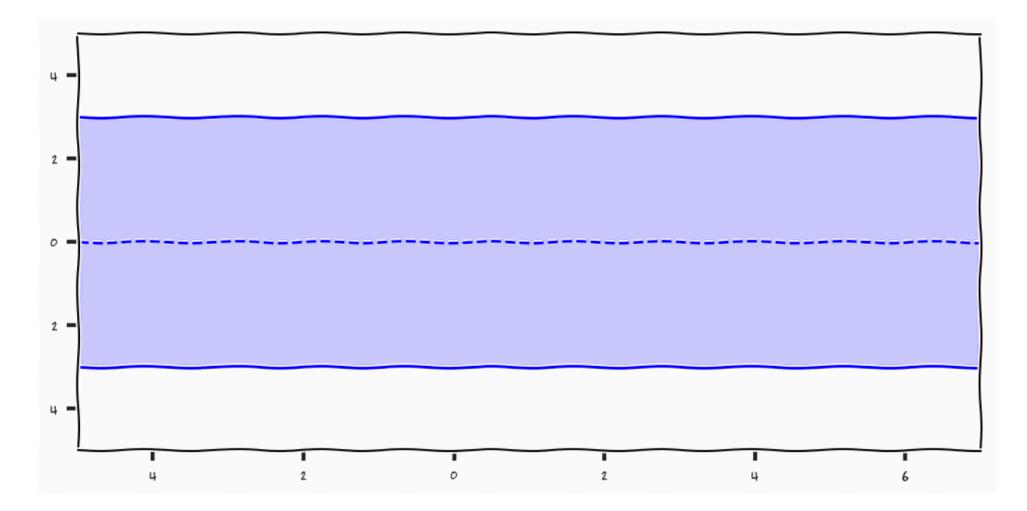
Markov Decision Process

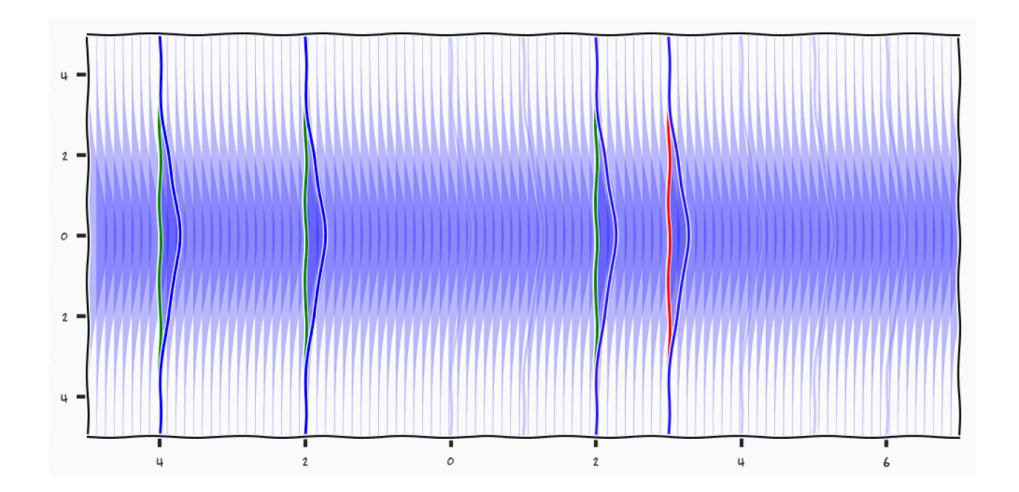
- MDP (S, A, T, γ, R)
 - S, A are possible state and actions
 - T is a transition function
 - R is a reward function
 - γ is a discount factor

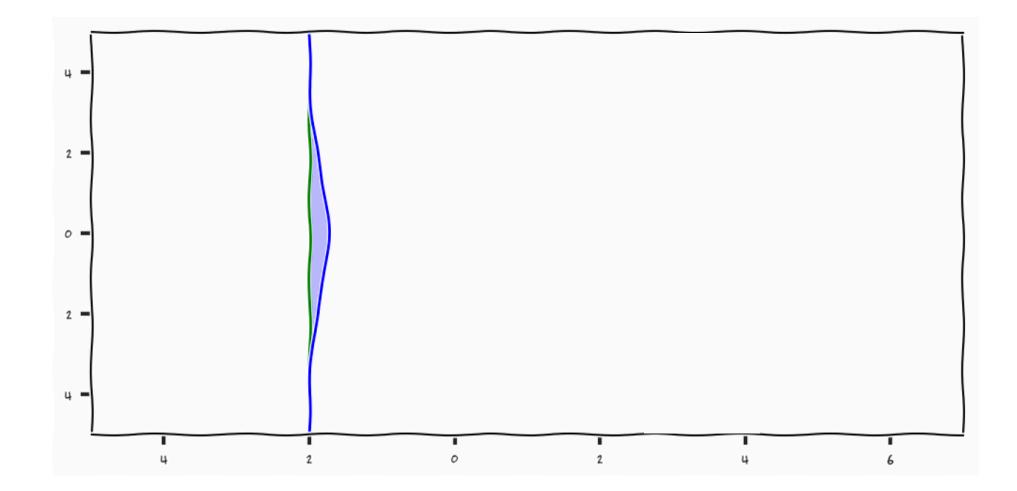


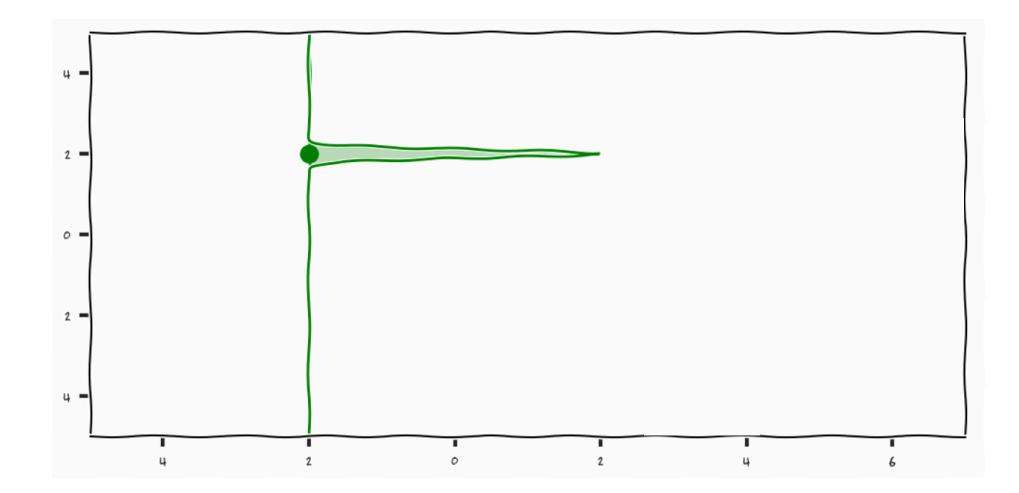
Fleet Markov Decision Process

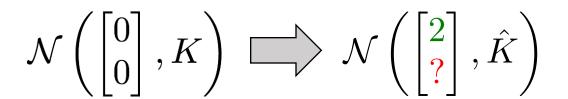
- Fleet MDP $(S, A, \mathbb{T}, \gamma, R)$
 - T is a set of M transition models $T_m(s, a)$
- How can we detect similarities and transfer knowledge between models?
- Joint Bayesian regression model (i.e., Gaussian process)
 → correlations between fleet members

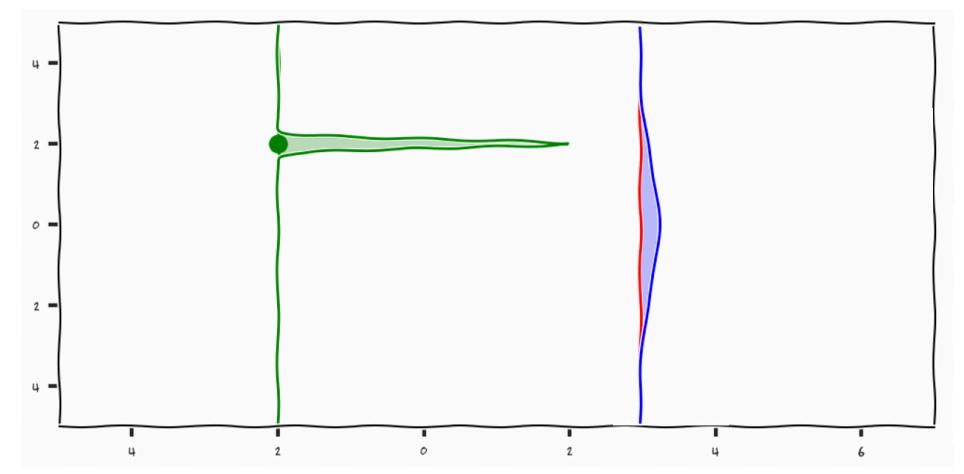


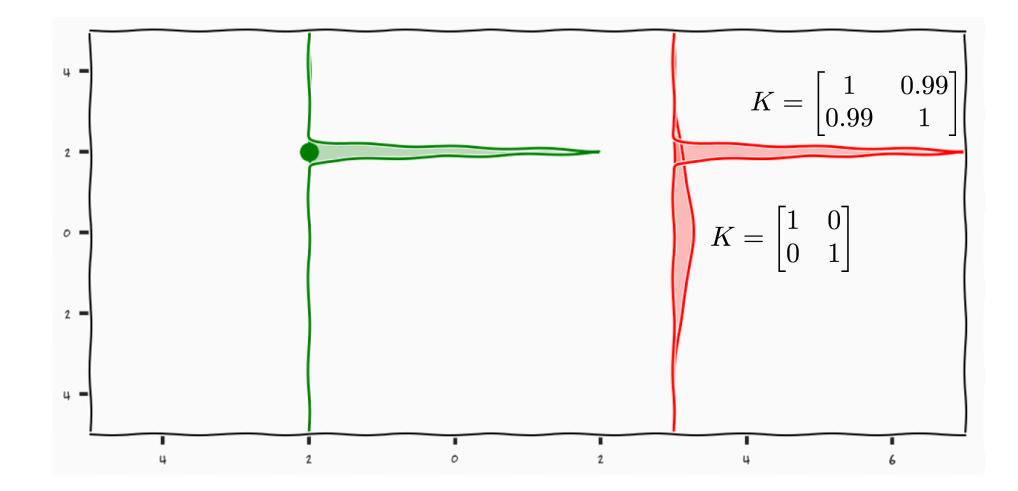


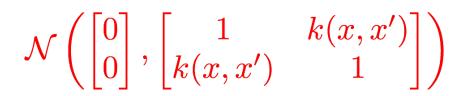


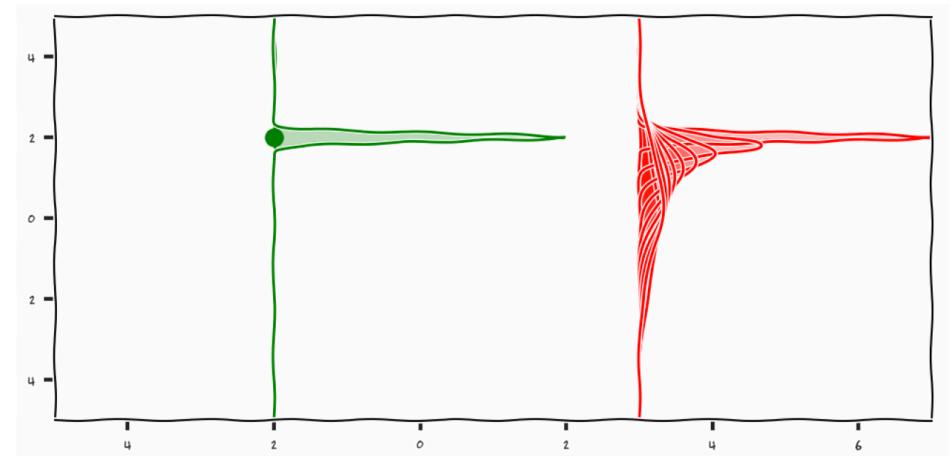








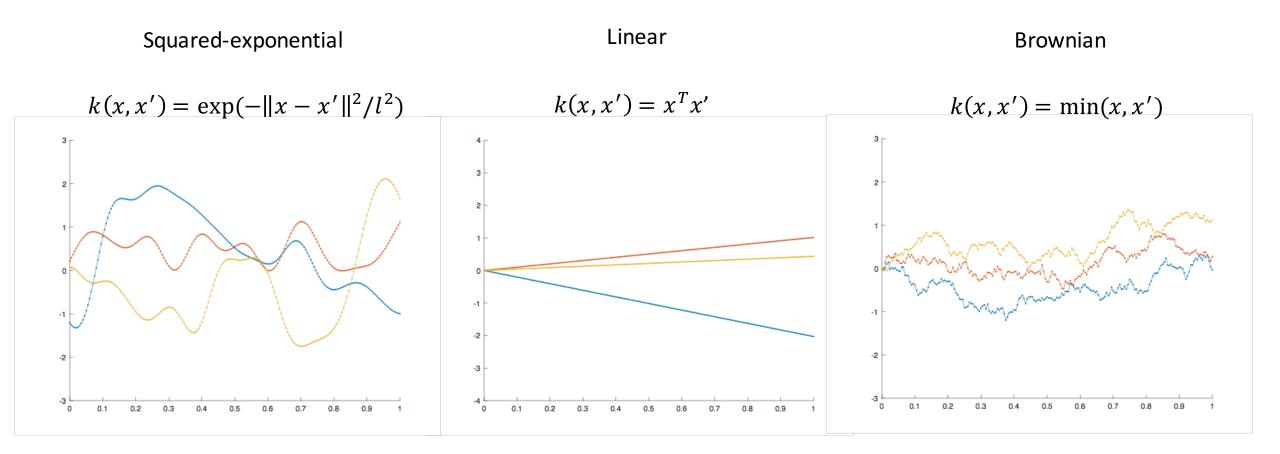


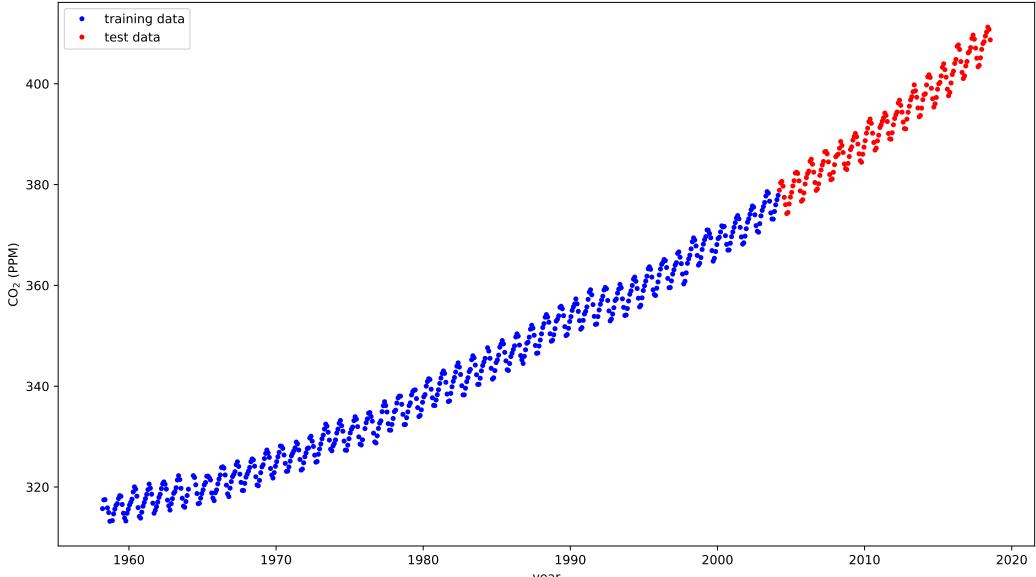


Covariance kernels

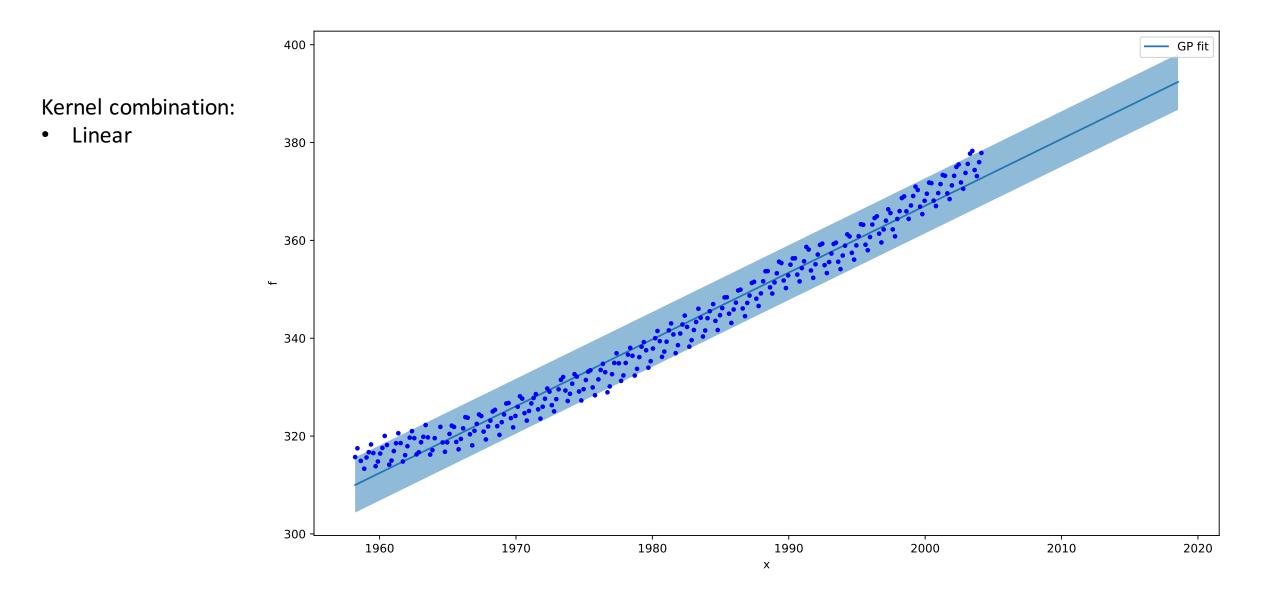
Squared-exponentialLinearBrownian $k(x,x') = \exp(-||x - x'||^2/l^2)$ $k(x,x') = x^T x'$ $k(x,x') = \min(x,x')$

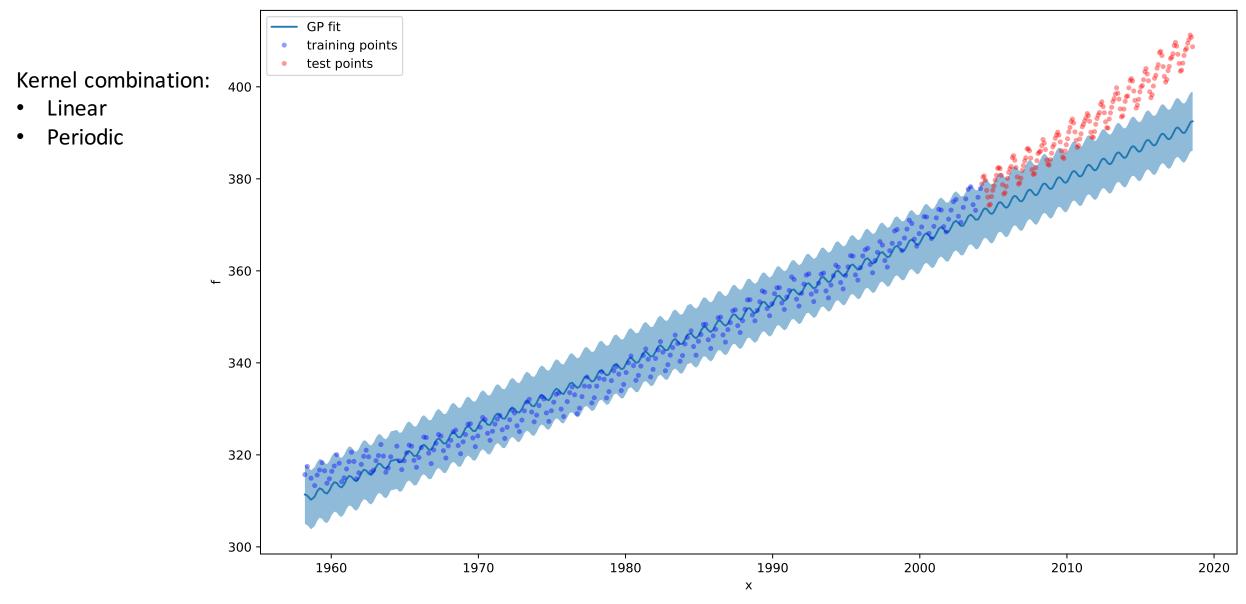
Sample functions from GPs



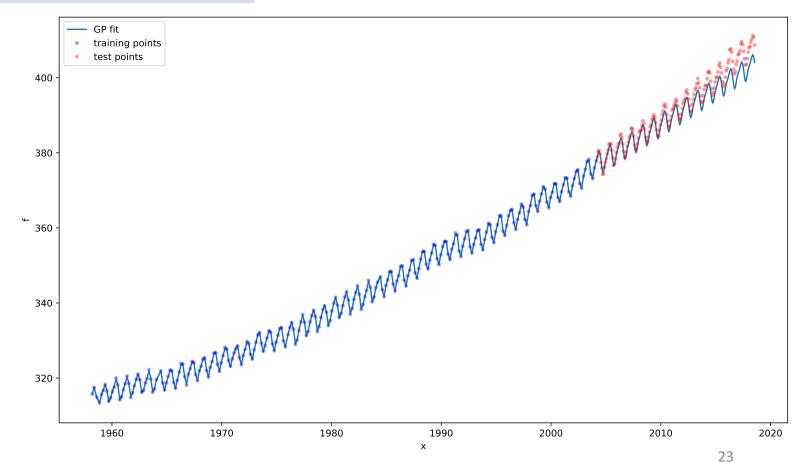


Monthly mean CO_2 at the Mauna Loa Observatory, Hawaii

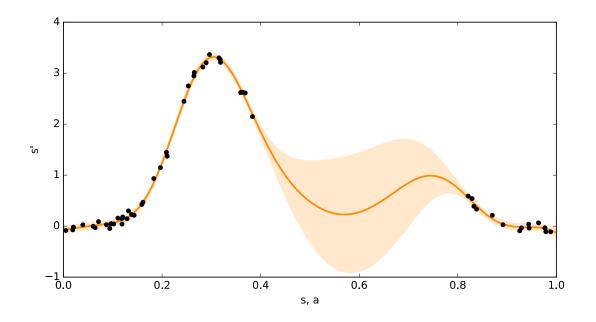




Property	Kernel
Linear trend	Linear
Constant offset	Bias
Periodicity (short term)	Periodic
Amplitude modulator (long term)	Squared-exponential
Non-linearity in overall trend	Exponential

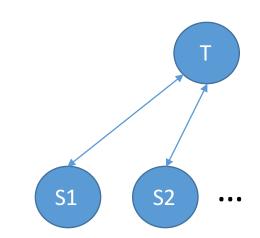


- Bayesian model:
 - Parameters are considered to be random
- Used for regression:
 - 1) Describe prior beliefs
 - 2) Observe data
 - 3) Update belief (i.e., posterior)
- Generalization through pair-wise correlations:
 - If x and x' are similar, their outputs y and y' are correlated
 - E.g., distance-based
- $f(x) \sim \mathcal{GP}(0, k(x, x'))$



Transfer over transition models

- 1) Adopt "multiple sources single target" transfer framework
 - Choose target in fleet, the rest are sources
 - Sources have independent components
 - $T_s(x) = w_{s,s}G_s(x) + \alpha_s L_s(x)$
 - Target has an independent component, but is also dependent on the sources
 - $T_t(x) = \sum_s w_{t,s} G_s(x) + \alpha_t L_t(x)$
- 2) The components are sampled from a a zero-mean GP
 - A linear combination of components is also a GP!



Transfer over transition models

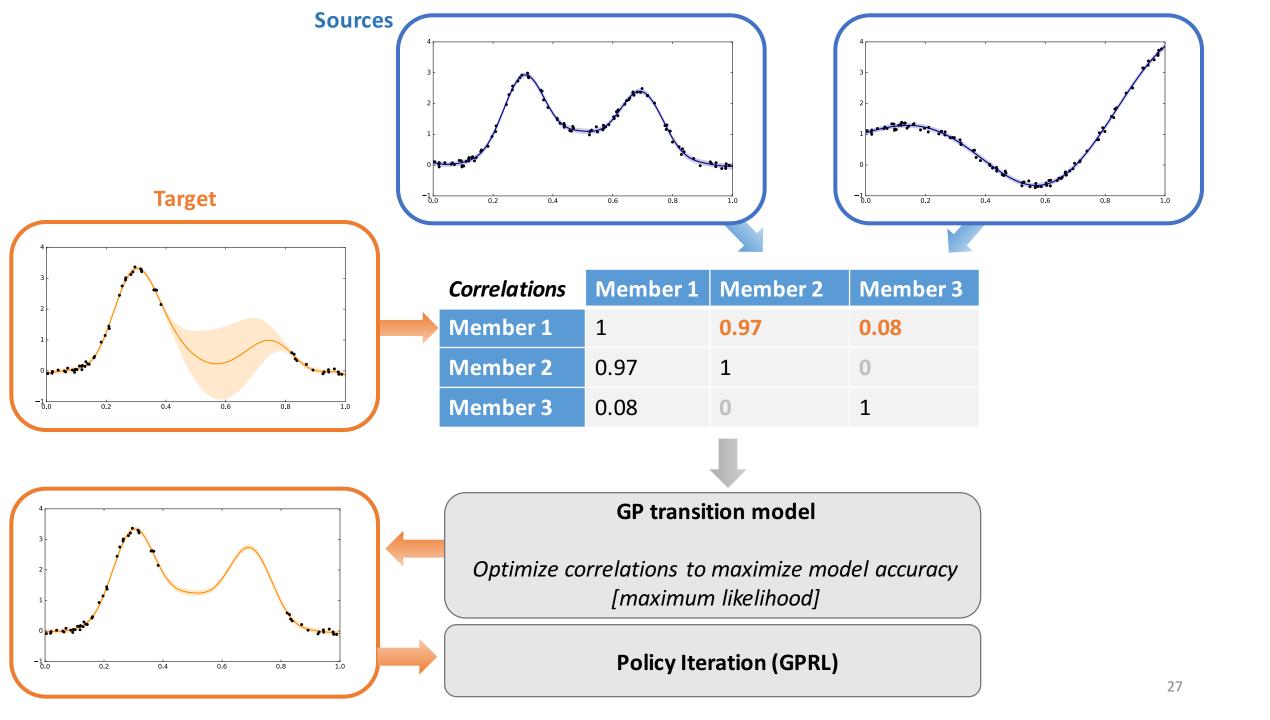
1)
$$\operatorname{cov}(T_t(x), T_s(x'))$$

= $w_{t,s} w_{s,s} \operatorname{cov}(G_s(x), G_s(x'))$
= $w_{t,s} w_{s,s} \operatorname{k}(x, x')$

[independence] [covariance kernel]

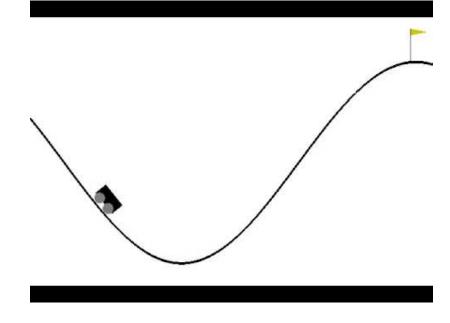
- 2) New fleet-wide kernel:
 - $k_F([x,m], [x',m']) = G_{m,m'} k(x,x')$, where G contains the weights

Key insight: Correlate fleet members' transition models

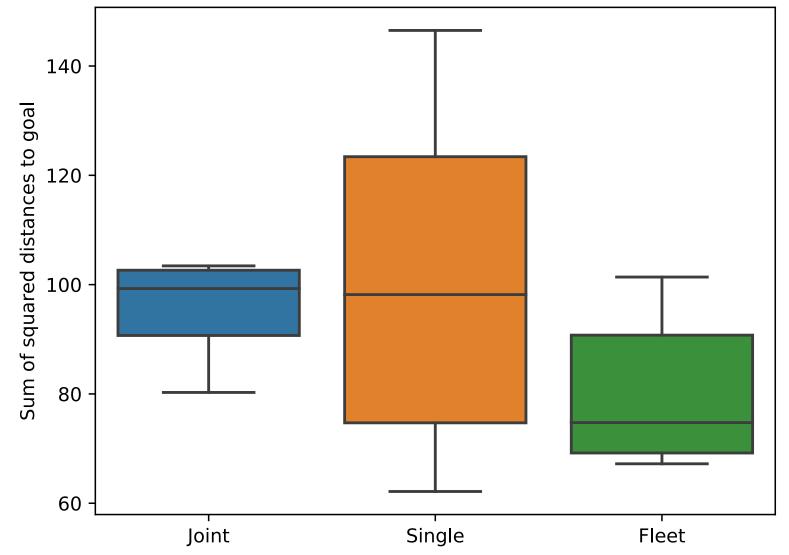


Continuous Mountain Car

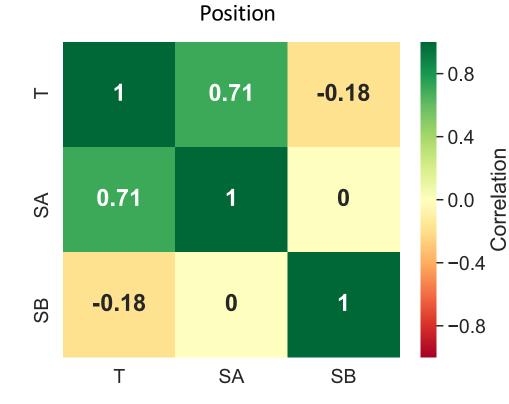
- 1 target with random batch of 20 transitions:
 - Mass 1.0 kg
- 2 sources with random batch of 100 transitions:
 - Source A has mass 1.1 kg
 - Source B has mass 5.0 kg
- Peaked Gaussianly shaped reward is given at the goal (at the flag with a velocity of 0).
- Objective: Reach the goal using sources' and own transition models

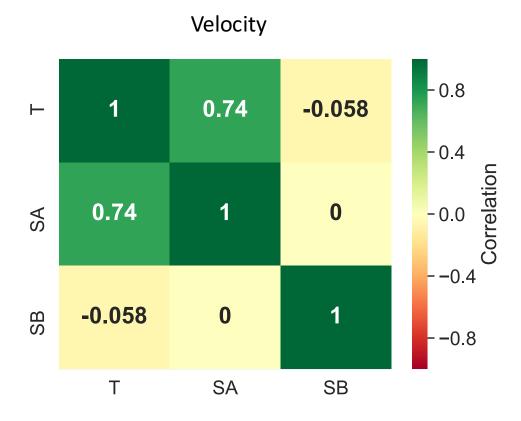


Performance



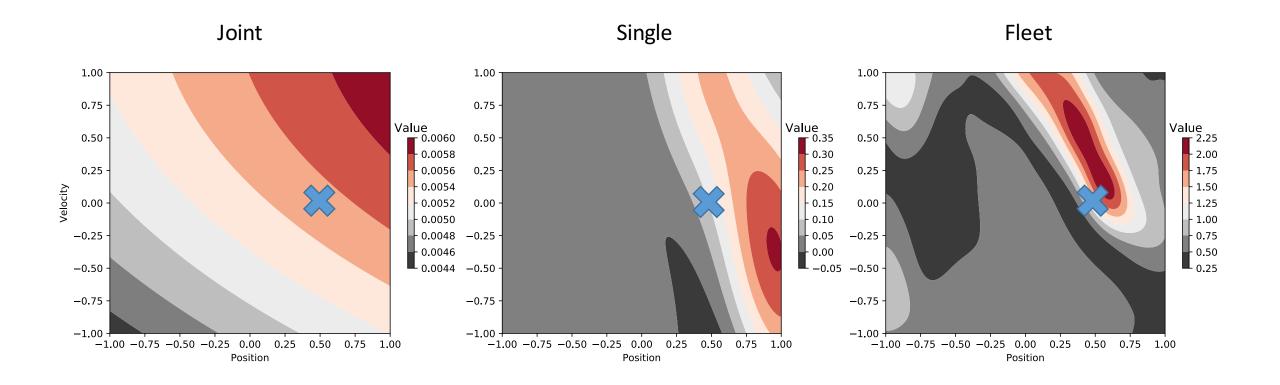
Learned correlations





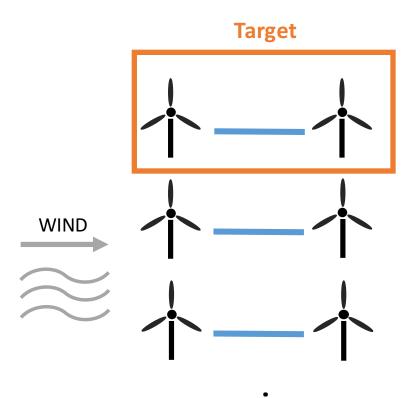
30

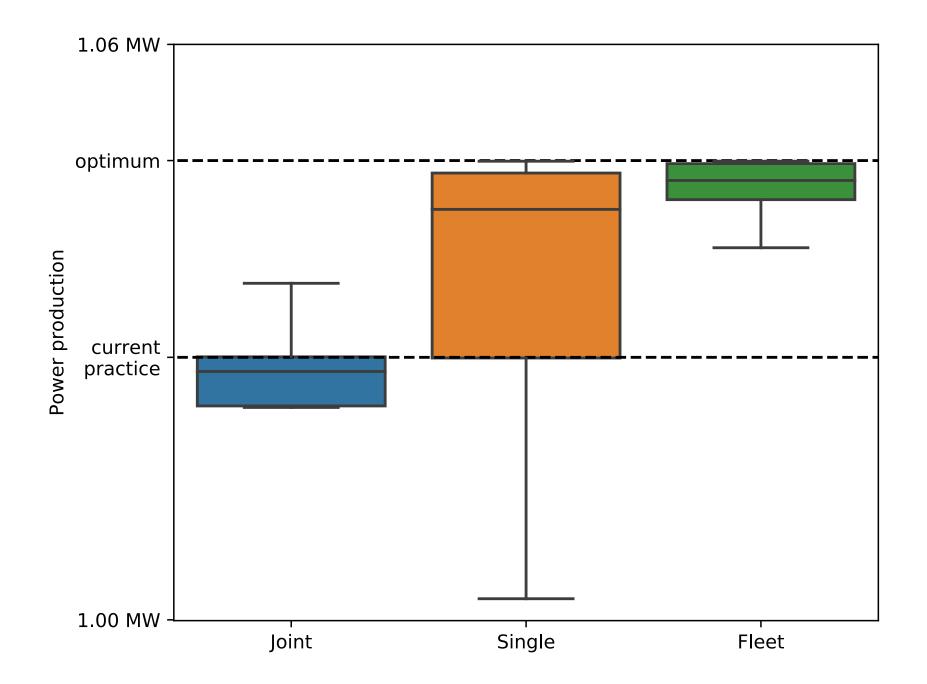
Value Functions



Wind Farm Control

- Fleet of 8 agents, 50 samples each
- Members are turbine rows: 1 upstream and 1 downstream turbine
- Non-linear dynamics due to wake
- Vary generator efficiencies due to degradation
- Learn to orient themselves to maximize power production





Conclusion

- Sparse transfer learning model for fleet control
- GPs → sound, efficient framework to deal with correlations between fleet members
- Allows for inclusion of domain knowledge
- URL: https://arxiv.org/abs/1911.10121