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Outline

• Fleet	Setting

• Reinforcement	Learning	(RL)

• Gaussian	process	(GP)

• Fleet	GPRL

• Demonstration	on	mountain	car

• Applied	on	wind	farm	control	case
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Fleet Setting

• Similar devices, same control	task
• Large	scale	production	/	operation
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Fleet Setting

• Similar devices, same control	task
• Large	scale	production	/	operation
• High	maintenance costs!
• Failure	prevention	through	control
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Fleet	Control
• Failures	are	costly	events,	how	do	we	learn	from	them?
• Sample	efficiency	is	key!

• Group	of	devices/machines	with	same	objective	&	same	design
• Potential	to	share	knowledge	about	control	task

• Small	discrepancies
• e.g.,	degradation,	production	errors
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Sharing	Control

≈ wind	turbines							≠ control	strategies

LifetimePower Safety

Challenge:	How	do	we	share	information?
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Markov	Decision	Process

• MDP	 𝑆, 𝐴, 𝑇, 𝛾, 𝑅
• S,	A	are	possible	state	and	actions
• T	is	a	transition	function
• R	is	a	reward	function
• 𝛾 is	a	discount	factor
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Fleet	Markov	Decision	Process

• Fleet	MDP	 𝑆, 𝐴, 𝕋, 𝛾, 𝑅
• 𝕋 is	a	set	of	𝑀 transition	models	𝑇+(𝑠, 𝑎)

• How	can	we	detect	similarities	and	transfer	knowledge	between	
models?

• Joint	Bayesian	regression	model	(i.e.,	Gaussian	process)
à correlations	between	fleet	members
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Gaussian	Process
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Figure	made	by	Carl	Henrik	Ek	(Gaussian	Process	Summer	School	2018)



Gaussian	Process
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Gaussian	Process
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Gaussian	Process
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Gaussian	Process
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Gaussian	Process
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Gaussian	Process
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Covariance	kernels
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Linear BrownianSquared-exponential

𝑘 𝑥, 𝑥2 = min	(𝑥, 𝑥2)𝑘 𝑥,𝑥2 = 𝑥7𝑥′𝑘 𝑥, 𝑥2 = exp	(− 𝑥 − 𝑥2 =/𝑙=)



Sample	functions	from	GPs
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Linear BrownianSquared-exponential

𝑘 𝑥, 𝑥2 = min	(𝑥, 𝑥2)𝑘 𝑥, 𝑥2 = 𝑥7𝑥’𝑘 𝑥, 𝑥2 = exp	(− 𝑥 − 𝑥2 =/𝑙=)



Example	– CO2	at	Mauna	Loa
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Kernel	combination:
• Linear
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Kernel	combination:
• Linear
• Periodic
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Property Kernel

Linear	trend Linear

Constant	offset Bias

Periodicity	(short term) Periodic

Amplitude	modulator	 (long	 term) Squared-exponential

Non-linearity in	overall	trend Exponential



Gaussian	Process

• Bayesian	model:
• Parameters	are	considered	to	be	random

• Used	for	regression:
1) Describe	prior	beliefs
2) Observe	data	
3) Update	belief	 (i.e.,	posterior)

• Generalization	through	pair-wise	correlations:
• If	𝑥 and	𝑥′ are	similar,	their	outputs	𝑦 and 𝑦′ are	correlated
• E.g.,	distance-based

• 𝑓(𝑥)	~	𝒢𝒫 0, 𝑘 𝑥, 𝑥′
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Transfer	over	transition	models

1) Adopt	“multiple	sources	– single	target”	transfer	
framework
• Choose	target	in	fleet,	the	rest	are	sources

• Sources	have	independent	components
• 𝑇F 𝑥 = 𝑤F,F𝐺F 𝑥 + 𝛼F𝐿F 𝑥

• Target	has	an	independent	component,	but	is	also	
dependent	on	the	sources
• 𝑇L 𝑥 = 	∑ 𝑤L,F𝐺F 𝑥�

F + 𝛼L𝐿L 𝑥

2) The	components	are	sampled	from	a	a	zero-mean	GP
• A	linear	combination	of	components	is	also	a	GP! 25
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Transfer	over	transition	models

1) cov 𝑇L 𝑥 , 𝑇F 𝑥′
=	𝑤L,F		𝑤F,F	cov 𝐺F 𝑥 , 𝐺F 𝑥′ [independence]
=	𝑤L,F		𝑤F,F	k(𝑥, 𝑥′) [covariance	kernel]

2) New	fleet-wide	kernel:
• 𝑘T [𝑥,𝑚], [𝑥2,𝑚′] = 	 𝐺+,+2	k 𝑥, 𝑥2 ,	where	G	contains	the	weights

Key	insight:	Correlate	fleet	members’	transition	models
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Correlations Member	1 Member	2 Member	3
Member	1 1 0.97 0.08

Member 2 0.97 1 0

Member	3 0.08 0 1

GP	transition	model

Optimize	correlations	 to	maximize	model	accuracy
[maximum	likelihood]

Policy	Iteration	(GPRL)
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Continuous	Mountain	Car

• 1	target	with	random	batch	of	20	transitions:
• Mass	1.0	kg

• 2	sources	with	random	batch	of	100	transitions:
• Source	A	has	mass	1.1	kg
• Source	B	has	mass	5.0 kg	

• Peaked	Gaussianly shaped	reward	is	given	at	the	goal
(at	the	flag	with	a	velocity	of	0).

• Objective:	Reach	the	goal	using	sources’	and	own	transition	models
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Performance



Learned	correlations
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Position Velocity



Value	Functions

Joint Single Fleet
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Wind	Farm	Control

• Fleet	of	8	agents,	50	samples	each

• Members	are	turbine	rows:	1	upstream	and	1	
downstream	turbine

• Non-linear	dynamics	due	to	wake

• Vary	generator	efficiencies	due	to	degradation

• Learn	to	orient	themselves	to	maximize	power	
production
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Conclusion

• Sparse	transfer	learning	model	for	fleet	control

• GPs	à sound,	efficient	framework	to	deal	with	correlations	between	
fleet	members

• Allows	for	inclusion	of	domain	knowledge

• URL:	https://arxiv.org/abs/1911.10121
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