Exploiting Structure in Bayesian Optimization using Multi-Fidelity Probabilistic Models

Boris Bogaerts, Rudi Penne

Overview

- Application
- Machinery
- Theory
- Examples

Overview

- Application
- Machinery
- Theory
- Examples

Practical problem

Preliminary conclusion

- Submodular orienteering problem (coverage function)
- Multilinear extention can be estimated as an integral of the pointwise product of two functions
- Problem is factorized in a function dependent on the constraints, and a function dependent on the problem : $\overline{F}_x = \int x(v)w(v)dv$

12-12-2019

• Functions are complex

Overview

- Application
- Machinery
- Theory
- Examples

General optimization idea

We are interested in following problem

 $\int g(x).h(x)dx$

But we do not have access to these possibly complex functions, so we will learn them

$$P(f_g^*|x, y_g, x^*) \text{ and } P(f_h^*|x, y_h, x^*)$$

We also learn the dependence on the parameters which we want to optimize $P(f_g^*|[x, \theta_g], y_g, [x, \theta_g]^*)$ and $P(f_h^*|[x, \theta_h], y_h, [x, \theta_h]^*)$

General optimization idea

The final optimization problem becomes

$$\operatorname{argmax}_{\theta_g,\theta_h} E\left[\int f_g^*(x)f_h^*(x)dx\right]$$

Our optimization strategy:

- Learn both distributions in advance (Gaussian Processes)
- In the optimization loop use optimized quadrature points to evaluate integral.
- Effectively sample the parameter space using Bayesian Optimisation

12-12-2019

Gaussian Process

Gaussian distribution over RKHS

Analytic exact expression for posterior after point measurements

Bayesian quadrature

Integration without close form expression

Bayesian quadrature

Integration without close form expression

Bayesian quadrature **Bayesian quadrature** $f_2(x) = \sin(x+1) + 1$ Integration without close form expressic 2.5 1.5 **Trapezoidal rule** -0.5 b₂ a₂ $\int f(x)dx \approx \mathbf{y} \ \mathbf{K}^{-1} \ \left| \ K(X,x)dx \right|^{-1}$ У 2 $[f(x_1) \quad \cdots \quad f(x_n)] \begin{bmatrix} w_1 \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$ $\int f(x)dx \approx \sum_{i=1}^{n} w_i \big(f(x_{i-1}) + f(x_i) \big)$

Product of Gaussian Processes

Let $h \sim GP(m_h(x), C_h(x, x'))$ and $g \sim GP(m_g, C_g(x, x'))$ then we are interested the distribution over f.g given by its mean:

$$m_{gh}(x) = E[h(x)]E[g(x)] = m_h(x).m_g(x)$$

And covariance

$$C_{gh}(x,x') = C(f(x),g(x),f(x')g(x'))$$

The covariance of products of Gaussian random variables is analytically available (Bohrnstedt et al [7]) and for GP's given by: $C_{ah}(x,x') = m_h(x)C_a(x,x')m_h(x') + m_g(x)C_h(x,x')m_g(x') + C_h(x,x')C_g(x,x')$

We choose to conveniently neglect other moments

Product quadrature

Further derivations are tedious!!! But three types of integrals need to be computed:

$$\int \mathcal{K}_{h}(X_{h_{i}}, x) \mathcal{K}_{g}(X_{g_{j}}, x) dx$$
$$\int \int \mathcal{K}_{h}(x, x') \mathcal{K}_{g}(x, x') dx' dx$$
$$\int \mathcal{K}_{h}(x, X_{h_{i}}) \int \mathcal{K}_{h}(X_{h_{j}}, x') \mathcal{K}_{g}(x, x') dx' dx$$

Computational cost Mean : O(MN)Variance : $O(M^2N)$

12-12-2019

Where X_{h_i} and X_{h_i} are training points

A non-exhaustive list of possible kernel combinations is given by Briol et al [3]

Our choice of kernel

Product of one dimensional piecewise polynomials (1st order) with compact support

 $\mathcal{K}(x, x') = \prod_{i=1}^{D} \max(\theta_{1,i}(1 - \theta_{2,i}|x - x'|), 0)$

- Brownian motion prior (nonlinearities)
- Compact support
- Sparse

12-12-2019

12-12-2019

12-12-2019

Note on difference with BQ

• Bayesian quadrature

Choose next quadrature point to minimize variance on the estimated integral

• Our setting

Remove n quadrature points that minimize the variance increase on the estimated integral

We use the fully independent training conditional approximation by Snelson and Ghahramani (2006) (**FITC**, using classification of Quiñonero-Candela et al(2005))

12-12-2019

We use the fully independent training conditional approximation by Snelson and Ghahramani (2006) (**FITC**, using classification of Quiñonero-Candela et al(2005))

We use the fully independent training conditional approximation by Snelson and Ghahramani (2006) (**FITC**, using classification of Quiñonero-Candela et al(2005))

We use the fully independent training conditional approximation by Snelson an Ghahramani (2006) (**FITC**, using classification of Quiñonero-Candela et al(2005))

We use the fully independent training conditional approximation by Snelson and Ghahramani (2006) (**FITC**, using classification of Quiñonero-Candela et al(2005))

- Positions of pseudo input locations u are optimized to maximize the marginal likelihood (details in the original work by Snelson an Ghahramani (2006))
- Inference is possible by marginalizing out pseudo inputs u
- Exact test conditional (Quiñonero-candela, Rasmussen, & Herbrich, 2005)

 $p(f_*|\mathbf{u}) = \mathcal{N}(K_{*u}K_{uu}^{-1}\mathbf{u}, K_{**} - K_{*u}K_{uu}^{-1}K_{u*})$

Example: varying number of pseudo inputs

12-12-2019

Example: varying number of pseudo inputs

12-12-2019

Optimization

The goal is not to evaluate every point. We consider following optimization problem:

$$\underset{\Delta \in \mathbb{R}^n}{\operatorname{argmax}} E\left[\int P(f_g^* | x, y_g, x^*) P(f_h^* | x + \Delta, y_h, x^*) dx\right]$$

Strategy (Bayesian optimization):

- Evaluate functions at points Δ^*
- Put Gaussian process prior on all $\Delta \in \mathbb{R}^n$
- Select new location with highest expected improvement/...

12-12-2019

Overview

- Application
- Machinery
- <u>Theory</u>
- Examples

$$\underset{\Delta \in \mathbb{R}^{n}}{\operatorname{argmax}} E\left[\int P(f_{g}^{*} | x, y_{g}, x^{*}) \cdot P(f_{h}^{*} | x + \Delta, y_{h}, x^{*}) dx \right]$$

$$g(a, b)$$

Learning g is what we can do

Overview

- Application
- Machinery
- Theory
- <u>Examples</u>

12-12-2019

The optimization puzzle: Approximate puzzle piece

20 pseudo-inputs

30 pseudo-inputs

40 pseudo-inputs

12-12-2019

12-12-2019

Observation: Cost function becomes simpler/nicer !!!

Puzzle	Piece
100 pseudo-inputs	30 pseudo-inputs

Puzzle	Piece
50 pseudo-inputs	15 pseudo-inputs

12-12-2019

Interesting partial results

Free VR demo if you visit Antwerp

*GP compressed (from 31 000 points) to only 50 pseudo-input points

12-12-2019

Preliminary conclusion

- Application
- Machinery
- <u>Theory</u>

References

Briol, F.-X., Oates, C. J., Girolami, M. A., Osborne, M. A., & Sejdinovic, D. (2015). Probabilistic Integration. CoRR, abs/1512.00933.

Halcon, B. (n.d.). Robot-enabled LDV basketball modal data collection trial run. Retrieved from https://www.youtube.com/watch?v=xx2JI7fGf_E%0A

Karimi, M., Lucic, M., Hassani, H., & Krause, A. (2017). Stochastic submodular maximization: The case of coverage functions. In Advances in Neural Information Processing Systems (pp. 6856–6866).

Quiñonero-candela, J., Rasmussen, C. E., & Herbrich, R. (2005). A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research.

https://doi.org/10.1163/016918609X12529286896877

Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian Processes using Pseudo-inputs. Advances in Neural Information Processing Systems 18. https://doi.org/10.1.1.60.2209

Zhang, H., & Vorobeychik, Y. (2016). Submodular Optimization with Routing Constraints. Proceedings of the 30th Conference on Artificial Intelligence (AAAI 2016).

12-12-2019

