
Constrained single-objective optimization:
combining GPs and Karush Kuhn Tucker

conditions

Prof. Dr. Inneke Van Nieuwenhuyse

Data Science Institute, Hasselt University

Research Center for Operations Management, KU Leuven

Joint work with Jack Kleijnen (Tilburg University) and Wim Van Beers

Overview

• (Black box) constrained optimization

• Our approach:

• Combination of GPR and KKT

• Infill criterion =EI-KT

• Results on test problems

• Conclusions

(Black box) constrained optimization

We consider the following optimization problem:

• x = (x1,…xk) = controls (decision variables, actions)

• : input constraints (box constraints)

• : objective function

• : nonlinear constraint functions

c

Analytically intractable, but you have some “model” (physical experiment, simulation

model,…) to accurately observe these EXPENSIVE calculations (time, cost, resources,…)

c

General single-objective

nonlinear constrained

optimization problem

(Black box) constrained optimization

Examples:

• Production process: process parameters impact on product quality, product
cost,…: problem =

• minimize cost while quality needs to be above a minimum threshold level

• maximize quality while cost needs to stay below a maximum threshold level

• Warehousing: reorder points and reorder quantities impact on service level and
inventory holding cost: problem =

• minimize holding cost while service level needs to be above a minimum threshold level

• maximize service level while holding cost needs to stay below a maximum threshold level

(Black box) constrained optimization

In many constrained optimization problems, optimal solution makes (at least) 1
output constraint binding!

• Because there is a trade-off between the goal output and this output constraint!

Product cost

(w0)

Product quality (= constraint)

Min Product cost

s.t. Product quality >= µ

µ

w0*
We focus on this type of problem!

Solution needs to lie on (at least 1)

output constraint!

Our approach (ML + OR)

Aims specifically at expensive systems!

• We approximate expensive system outcomes using machine learning model:
Gaussian Process Regression (GPR) (ML element)

• Smartly choose next decision vector(s) to simulate using infill criterion: Exploits GPR
information to estimate how promising new decision vector would be

• Multiple criteria exist: expected improvement, probability of improvement, differential
entropy,…

• We propose a new infill criterion that combines expected improvement (EI) and
preferably samples points that are close to or on the constraint(s)! (OR element:
KKT conditions)

KKT conditions

= first order necessary conditions for a solution in nonlinear
programming to be optimal

Our focus: Problems with optimal solution on (at

least one) binding output constraint

Assumption: all functions are differentiable

Set of binding output constraints

Set of binding input constraints

KKT conditions

GPR model of a given function also gives us estimate of the gradient of that
function (Matlab DACE Toolbox)

How can we estimate the multipliers? Least-squares regression

with

BUT: (1) will never perfectly hold (error term due to regression) how to take KKT

into account in the infill criterion?

(1)

KKT conditions

Ideally: (-)gradient estimated by LS model equals (-)gradient estimated by GPR

We quantify how close these two gradients are:

(1)

=

= 1 in case of perfect fit!! Otherwise, we prefer close to 1

=

Algorithm

INITIAL DESIGN

Size 10*k, LHS

SIMULATE

Expensive

evaluations

FIT GPR

MODELS

Distinct model

for each

output

PATTERN SEARCH

To maximize

INFILL POINT

FOUND?

yes no

Output constraint is

considered to be binding if

Infill criterion: combines

• expected improvement at the new point x balances exploration

and exploitation

• Cos value at the new point x “rewards” points that are close to

the constraint

�/2>=0.01?

� ← �/2

yes

no

RETURN

OPTIMUM

Results on toy example (Gramacy et al.2016)

Global optimum

Results on toy example (Gramacy et al.2016)

• Example of search path

• We do m=50
macroreplications (each time
different initial LHS)

True

optimum=0.5998

Results on toy example (Gramacy et al.2016)

• Other search path example

True

optimum=0.5998

Results on toy example (Gramacy et al.2016)

Boxplot final solution

(50 macroreplications)
median = 0.60085, mean = 0.6054

Number of iterations until

stopping criterion reached

(50 macroreplications)

Results on toy example (Gramacy et al.2016)

• Good performance on w0;min

• Much faster than other recent algorithms

Results on spring example

N = x1

D=x2

d=x3

Results on spring example

• Two arbitrary search paths

“True” optimum = 0.01269 (average of Table

3 Tao et al.)

(best in literature: 0.012664, in 92 iterations,

EKCO by Tao et al.)

Results on spring example

• Based on 25 replications

• True optimum =

Boxplot final solution

(25 macroreplications)

Number of iterations until

stopping criterion reached

(25 macroreplications)

Our median = 0.0133

Our mean = 0.0154 Much faster

than BO algos

in Tao et al.!

Conclusions

• Results look promising, but probably room for improvement (see
spring problem)

• Due to stopping too soon?

• Due to not exploring enough?

• Due to pattern search options? Kernel choice? ….

• Other (engineering/real-life) test problems + compare performance
with other recent algorithms

• Random simulation outputs

